Targeting the autophagy-NAD axis protects against cell death in Niemann-Pick type C1 disease models. Kataura T.*†, Sedlackova L.*, Sun C., Kocak G., Wilson N., Banks P., Hayat F., Trushin S., Trushina E., Maddocks O.D.K., Oblong J.E., Miwa S., Imoto M., Saiki S., Erskine D., Migaud M.E., Sarkar S.† and Korolchuk V.I.† 15(5): 382 (2024). *Equal contribution; †Corresponding authors
NAD depletion mediates cytotoxicity in human neurons with autophagy deficiency. Sun C.*, Seranova E.*, Cohen M.A.*, Chipara M., Roberts J., Astuti D., Palhegyi A.M., Acharjee A., Sedlackova L., Kataura T., Otten E.G., Panda P.K., Reyna S.L., Korsgen M.E., Kauffman K.J., Huerta-Uribe A., Zatyka M., Silva L.F.S.E., Torresi J., Zhang S., Hughes G.W., Ward C., Kuechler E.R., Cartwright D., Trushin S., Trushina E., Sahay G., Buganim Y., Lavery G.G., Gsponer J., Anderson D.G., Frickel E.M., Rosenstock T.R., Barrett T., Maddocks O.D.K., Tennant D.A., Wang H., Jaenisch R., Korolchuk V.I.† and Sarkar S.† (2023) 42(5): 112372 (2023). *Equal contribution; †Corresponding authors
Depletion of WFS1 compromises mitochondrial function in hiPSC-derived neuronal models of Wolfram syndrome. Zatyka M.*, Rosenstock T.R.*, Sun C., Palhegyi A.M., Hughes G.W., Reyna S.L., Astuti D., Maio A.D., Sciauvaud A., Korsgen M.E., Stanulovic V., Kocak G., Rak M., Pourtoy-Brasselet S., Winter K., Varga T., Jarrige M., Polveche H., Correia J., Frickel E.M., Hoogenkamp M., Ward D.G., Aubry L., Barrett T. and Sarkar S. 18(5): 1090-1106 (2023). *Equal contribution
The autophagy-NAD axis in longevity and disease. Wilson N.*, Kataura T.*, Korsgen M.E., Sun C., Sarkar S.† and Korolchuk V.I.† 33(9): 788-802 (2023). *Equal contribution; †Corresponding authors
Autophagy promotes cell survival by maintaining NAD Kataura T.*, Sedlackova L.*, Otten E.G., Kumari R., Shapira D., Scialo F., Stefanatos R., Ishikawa K., Kelly G., Seranova E., Sun C., Maetzel D., Kenneth N., Trushin S., Zhang T., Trushina E., Bascom C.C., Tasseff R., Isfort R.J., Oblong J.E., Miwa S., Lazarou M., Jaenisch R., Imoto M., Saiki S., Papamichos-Chronakis M., Manjithaya R., Maddocks O.D.K., Sanz A., Sarkar S.† and Korolchuk V.I.† 57(22): 2584-2598 (2022). *Equal contribution; †Corresponding authors
Trehalose limits opportunistic mycobacterial survival during HIV co-infection by reversing HIV-mediated autophagy block. Sharma V., Makhdoomi M., Singh L., Kumar P., Khan N., Singh S., Verma H.N., Luthra K., Sarkar S. and Kumar D. 17(2): 476-495 (2021).
Human induced pluripotent stem cell models of neurodegenerative disorders for studying the biomedical implications of autophagy. Seranova E.*, Palhegyi A.M.*, Verma S., Dimova S., Lasry R., Naama M., Sun C., Barrett T., Rosenstock T.R., Kumar D., Cohen M.A., Buganim Y. and Sarkar S. 432(8): 2754-2798 (2020). *Equal contribution
Chemical screening approaches enabling drug discovery of autophagy modulators for biomedical applications in human diseases. Panda P.K.*, Fahrner A.*, Vats S., Seranova E., Sharma V., Chipara M., Desai P., Torresi J., Rosenstock T., Kumar D. and Sarkar S. 7: 38 (2019). *Equal contribution
Discovery of pan autophagy inhibitors identified by a high-throughput screen highlights macroautophagy as an evolutionarily conserved process across three eukaryotic kingdoms. Mishra P., Dauphinee A.N., Ward C., Sarkar S., Gunawardena A.H.L.A.N. and Manjithaya R. 13(9): 1556-1572 (2017).
Dysregulation of autophagy as a common mechanism in lysosomal storage diseases.Seranova E.*, Connolly K.J.*, Zatyka M., Rosenstock T.R., Barrett T., Tuxworth R.I.† and Sarkar S.† 61(6): 733-749 (2017). *Equal contribution; †Corresponding authors
Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity.Carroll B., Maetzel D., Maddocks O.D.K., Otten G., Ratcliff M., Smith G.R., Dunlop E.A., Passos J.F., Davies O.R., Jaenisch R., Tee A.R., Sarkar S. and Korolchuk V.I. 5: e11058 (2016).
Small-molecule enhancers of autophagy modulate cellular disease phenotypes suggested by human genetics. Kuo S.Y., Castoreno A.B., Aldrich L.N., Lassen K.G., Goel G., Dančík V., Kuballa P., Latorre I., Conway K.L., Sarkar S., Maetzel D., Jaenisch R., Clemons P.A., Schreiber S.L., Shamji A.F. and Xavier R.J. 112(31): E4281-E4287 (2015).
Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick iPS cells.Maetzel D.*, Sarkar S.*, Wang H.*, Abi-Mosleh L., Xu P., Cheng A.W., Gao Q., Mitalipova M. and Jaenisch R. 2(6): 866-880 (2014). *Equal contribution
The developmental potential of iPSCs is greatly influenced by reprogramming factor selection.Buganim Y., Markoulaki S., van Wietmarschen N., Hoke H., Wu T., Ganz K., Akhtar-Zaidi B., He Y., Abraham B.J., Porubsky D., Kulenkampff E., Faddah D.A., Shi L., Gao Q., Sarkar S., Cohen M., Goldmann J., Nery J.R., Schultz M.D., Ecker J.R., Xiao A., Young R.A., Lansdorp P.M. and Jaenisch R. 15(3): 295-309 (2014).
Impaired autophagy in the lipid storage disorder Niemann-Pick type C1 disease.Sarkar S., Carroll B., Buganim Y., Maetzel D., Ng A.H.M., Cassady J.P., Cohen M.A., Chakraborty S., Wang H., Spooner E., Ploegh H., Gsponer J., Korolchuk V.I. and Jaenisch R. 5(5): 1302-1315 (2013).
Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling.Sahay G., Querbes W., Alabi C., Eltoukhy A., Sarkar S., Zurenko C., Karagiannis E., Love K., Chen D., Zoncu R., Buganim Y., Schroeder A., Langer R. and Anderson D.G. 31(7): 653-658 (2013).
Direct reprogramming of fibroblasts into embryonic Sertoli-like cells by defined factors. Buganim Y., Itskovich E., Hu Y.C., Cheng A.W., Ganz K., Sarkar S., Fu D., Welstead G.G., Page D.C. and Jaenisch R. 11(3): 373-386 (2012).
Complex inhibitory effects of nitric oxide on autophagy. Sarkar S., Korolchuk V.I., Renna M., Imarisio S., Fleming A., Williams A., Garcia-Arencibia M., Rose C., Luo S., Underwood B.R., Kroemer G., O’Kane C.J. and Rubinsztein D.C. 43(1): 19-32 (2011).
Lysosomal positioning coordinates cellular nutrient responses.Korolchuk, V., Saiki S., Lichtenberg M., Siddiqi F.H., Roberts E.A., Imarisio S., Jahreiss L., Sarkar S., Futter M., Menzies F.M., O’Kane C.J., Deretic V. and Rubinsztein D.C. 13(4): 453-460 (2011).
Laforin, the most common protein mutated in Lafora disease, regulates autophagy.Aguado C.*, Sarkar S.*, Korolchuk V., Criado-Garcia O., Vernia S., Boya P., Sanz P., de Cordoba S.R., Knecht E. and Rubinsztein D.C.
19(14): 2867-2876 (2010). *Equal contribution
Cystamine suppresses polyalanine toxicity in a mouse model of oculopharyngeal muscular dystrophy.Davies J.E., Rose C., Sarkar S. and Rubinsztein D.C. 2(34): 34ra40 (2010)
Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Williams A.*, Sarkar S.*, Cuddon P.*, Ttofi E.K., Saiki S., Siddiqi F.H., Jahreiss, L., Fleming A., Pask D., Goldsmith P., O’Kane C.J., Floto R.A. and Rubinsztein D.C. 4(5): 295-305 (2008). *Equal contribution
A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin. Sarkar S., Krishna G., Imarisio S., Saiki S., O'Kane C.J. and Rubinsztein D.C. 17(2): 170-178 (2008).
Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models.Sarkar S.*, Perlstein E.O.*, Imarisio S., Pineau S., Cordenier A., Maglathlin R.L., Webster J.A., Lewis T.A., O’Kane C.J., Schreiber S.L. and Rubinsztein D.C. 3(6): 331-338 (2007). *Equal contribution
Trehalose, a novel mTOR-independent autophagy inducer, accelerates clearance of mutant huntingtin and alpha-synuclein.Sarkar S., Davies J.E., Huang Z., Tunnacliffe A. and Rubinsztein D.C. 282(8): 5641-5652 (2007).
Lithium induces autophagy by inhibiting inositol monophosphatase.Sarkar S., Floto R.A., Berger Z., Imarisio S., Cordenier A., Pasco M., Cook L.J. and Rubinsztein D.C. 170(7): 1101-1111 (2005).